Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450925

RESUMO

The Arctic is a global warming 'hot-spot' that is experiencing rapid increases in air and ocean temperatures and concomitant decreases in sea ice cover. These environmental changes are having major consequences on Arctic ecosystems. All Arctic endemic marine mammals are highly dependent on ice-associated ecosystems for at least part of their life cycle and thus are sensitive to the changes occurring in their habitats. Understanding the biological consequences of changes in these environments is essential for ecosystem management and conservation. However, our ability to study climate change impacts on Arctic marine mammals is generally limited by the lack of sufficiently long data time series. In this study, we took advantage of a unique dataset on hooded seal (Cystophora cristata) movements (and serum samples) that spans more than 30 years in the Northwest Atlantic to (i) investigate foraging (distribution and habitat use) and dietary (trophic level of prey and location) habits over the last three decades and (ii) predict future locations of suitable habitat given a projected global warming scenario. We found that, despite a change in isotopic signatures that might suggest prey changes over the 30-year period, hooded seals from the Northwest Atlantic appeared to target similar oceanographic characteristics throughout the study period. However, over decades, they have moved northward to find food. Somewhat surprisingly, foraging habits differed between seals breeding in the Gulf of St Lawrence vs those breeding at the "Front" (off Newfoundland). Seals from the Gulf favoured colder waters while Front seals favoured warmer waters. We predict that foraging habitats for hooded seals will continue to shift northwards and that Front seals are likely to have the greatest resilience. This study shows how hooded seals are responding to rapid environmental change and provides an indication of future trends for the species-information essential for effective ecosystem management and conservation.


Assuntos
Caniformia , Focas Verdadeiras , Animais , Ecossistema , Aquecimento Global , Hábitos
2.
Sci Rep ; 10(1): 16966, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046805

RESUMO

Insight into animal movements is essential for understanding habitat use by individuals as well as population processes and species life-history strategies. In this study, we instrumented 25 fin whales with ARGOS satellite-transmitters in Svalbard, Norway, to study their movement patterns and behaviour (Area Restricted Search (ARS), transiting or unknown) during boreal autumn/early winter. Ten of the whales stayed in the tagging area (most northerly location: 81.68°N) for their entire tracking periods (max 45 days). The other 15 whales moved in a south-westerly direction; the longest track ended off the coast of northern Africa (> 5000 km from the tagging location) after 96 days. The whales engaged in ARS behaviour intermittently throughout their southward migrations. During transit phases the whales moved quickly; one individual maintained an average horizontal speed of 9.3 km/h (travelling 223 km per day) for a period of a week. This study documents that: (1) some fin whales might remain at high latitudes during winter; (2) the whales that do migrate probably feed along the way; (3) they can maintain high transiting speed for long periods and; (4) one breeding area for this species is likely located in deep, warm water some 100 km west of Morocco.


Assuntos
Migração Animal/fisiologia , Comportamento Animal , Ecossistema , Baleia Comum/fisiologia , Baleia Comum/psicologia , Comunicações Via Satélite , África do Norte , Animais , Cruzamento , Feminino , Masculino , Marrocos , Noruega , Estações do Ano , Svalbard , Fatores de Tempo
3.
Biol Lett ; 16(6): 20200148, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32516566

RESUMO

Spitsbergen's bowhead whales (Balaena mysticetus) were hunted to near extinction in the world's first commercial whaling enterprise; this population clearly remains threatened, but nothing is known about its distribution, making assessment unfeasible. In this study, we document range, movement patterns and habitat preferences of this population, based on tagging done from an icebreaker-based helicopter. Despite their reduced abundance, Spitsbergen's bowhead whales occupy much of their historical range, stretching across the northern Barents Region from East Greenland eastward to Franz Josef Land. Unlike larger bowhead populations to the west, they do not migrate in a classical sense, but rather disperse from wintering grounds in the northernmost parts of their range during spring, returning northward again in autumn, a pattern opposite in terms of directionality compared to other Arctic bowhead whale populations. The extreme affiliation of this population with cold, ice-filled waters is a concern given ongoing climate warming and concomitant rapid sea ice habitat loss.


Assuntos
Baleia Franca , Animais , Regiões Árticas , Groenlândia , Camada de Gelo , Svalbard
4.
Biol Lett ; 15(3): 20180834, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30836888

RESUMO

Global warming is inducing major environmental changes in the Arctic. These changes will differentially affect species owing to differences in climate sensitivity and behavioural plasticity. Arctic endemic marine mammals are expected to be impacted significantly by ongoing changes in their key habitats owing to their long life cycles and dependence on ice. Herein, unique biotelemetry datasets for ringed seals (RS; Pusa hispida) and white whales (WW; Delphinapterus leucas) from Svalbard, Norway, spanning two decades (1995-2016) are used to investigate how these species have responded to reduced sea-ice cover and increased Atlantic water influxes. Tidal glacier fronts were traditionally important foraging areas for both species. Following a period with dramatic environmental change, RS now spend significantly more time near tidal glaciers, where Arctic prey presumably still concentrate. Conversely, WW spend significantly less time near tidal glacier fronts and display spatial patterns that suggest that they are foraging on Atlantic fishes that are new to the region. Differences in levels of dietary specialization and overall behavioural plasticity are likely reasons for similar environmental pressures affecting these species differently. Climate change adjustments through behavioural plasticity will be vital for species survival in the Arctic, given the rapidity of change and limited dispersal options.


Assuntos
Mudança Climática , Mamíferos , Animais , Regiões Árticas , Noruega , Svalbard
5.
Mov Ecol ; 6: 21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386623

RESUMO

BACKGROUND: The Arctic is experiencing rapid reductions in sea ice and in some areas tidal glaciers are melting and retracting onto land. These changes are occurring at extremely rapid rates in the Northeast Atlantic Arctic. The aim of this study was to investigate the impacts of these environmental changes on space use by white whales (Delphinapterus leucas) in Svalbard, Norway. Using a unique biotelemetry data set involving 34 animals, spanning two decades, habitat use and movement patterns were compared before (1995-2001) and after (2013-2016) a dramatic change in the regional sea ice regime that began in 2006. RESULTS: White whales were extremely coastal in both study periods, remaining near the islands within the Svalbard Archipelago, even when winter sea ice formation pushed them offshore somewhat (later in the year in the recent period), into areas with drifting sea ice (concentrations up to 90%). In both periods, the whales followed the same basic patterns seasonally; they occupied the west coast in summer and shifted to the east coast as winter approached. However, space use did change between the two periods, with the whales spending less time close to tidal glacier fronts in the second period compared to the first (2nd-36% vs 1st-51%), a habitat characterized by low swimming speeds and high turning angles, and more time out in the fjords (2nd-26% vs1st-10%). Use of coastal transit corridors remained the same in both periods; the whales appear to minimize time spent moving between fjords. CONCLUSIONS: Glacier fronts have previously been shown to be important foraging areas for white whales in Svalbard and the movement metrics documented in this study confirms that this is still the case. However, use of the Fjords habitat in summer and fall (frequency of occupancy and movement metrics) seen in the recent period suggests that the white whales might now also be feeding on Atlantic prey that is increasingly common in the fjords, concomitant with influxes of Atlantic Water along the west coast of Svalbard. Such behavioural flexibility, if confirmed by further diet studies, would likely be important for white whales in adapting to new conditions in Svalbard.

6.
PLoS One ; 12(12): e0187889, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211797

RESUMO

Identifying environmental characteristics that define the ecological niche of a species is essential to understanding how changes in physical conditions might affect its distribution and other aspects of its ecology. The present study used satellite relay data loggers (SRDLs) to study habitat use by Northeast Atlantic hooded seals (N = 20; 9 adult females, 3 adult males, and 8 juveniles). Three different methods were used in combination to achieve maximum insight regarding key foraging areas for hooded seals in this region, which have decline by 85% in recent decades: 1) first passage time (FPT); 2) vertical transit rate and; 3) change in dive drift rate. Generalized additive mixed models (GAMM) were applied to each method to determine whether specific habitat characteristics were associated with foraging. Separate models were run for the post-molting and the post-breeding seasons; sex and age classes were included in the GAMMs. All three methods highlighted a few common geographic areas as being important foraging zones; however, there were also some different areas identified by the different methods, which highlights the importance of using multiple indexes when analyzing tracking and diving data to study foraging behavior. Foraging occurred most commonly in relatively shallow areas with high Sea Surface Temperatures (SST), corresponding to continental shelf areas with Atlantic Water masses. All age and sex classes overlapped spatially to some extent, but the different age and sex groups showed differences in the bathymetry of their foraging areas as well as in their vertical use of the water column. When foraging, pups dove in the upper part of the water column in relatively deep areas. Adult females foraged relatively shallowly in deep water areas too, though in shallower areas than pups. Adult males foraged close to the bottom in shallower areas.


Assuntos
Comportamento Alimentar , Focas Verdadeiras/fisiologia , Animais , Oceano Atlântico , Mergulho , Ecossistema , Feminino , Masculino , Movimento
7.
Photochem Photobiol ; 93(5): 1312-1319, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28425091

RESUMO

Bioluminescence is produced by a broad range of organisms for defense, predation or communication purposes. Southern elephant seal (SES) vision is adapted to low-intensity light with a peak sensitivity, matching the wavelength emitted by myctophid species, one of the main preys of female SES. A total of 11 satellite-tracked female SESs were equipped with a time-depth-light 3D accelerometer (TDR10-X) to assess whether bioluminescence could be used by SESs to locate their prey. Firstly, we demonstrated experimentally that the TDR10-X light sensor was sensitive enough to detect natural bioluminescence; however, we highlighted a low-distance detection of the sensor. Then, we linked the number of prey capture attempts (PCAs), assessed from accelerometer data, with the number of detected bioluminescence events. PCA was positively related to bioluminescence, which provides strong support that bioluminescence is involved in predator-prey interactions for these species. However, the limitations of the sensor did not allow us to discern whether bioluminescence (i) provided remote indication of the biological richness of the area to SES, (ii) was emitted as a mechanic reaction or (iii) was emitted as a defense mechanism in response to SES behavior.


Assuntos
Mergulho , Comportamento Alimentar , Luz , Medições Luminescentes/instrumentação , Comportamento Predatório , Focas Verdadeiras/fisiologia , Água do Mar , Acelerometria , Animais , Técnicas Biossensoriais , Feminino , Reprodutibilidade dos Testes
8.
PLoS One ; 11(11): e0166747, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27902786

RESUMO

Assessing energy gain and expenditure in free ranging marine predators is difficult. However, such measurements are critical if we are to understand how variation in foraging efficiency, and in turn individual body condition, is impacted by environmentally driven changes in prey abundance and/or accessibility. To investigate the influence of oceanographic habitat type on foraging efficiency, ten post-breeding female southern elephant seals Mirounga leonina (SES) were equipped and tracked with bio-loggers to give continuous information of prey catch attempts, body density and body activity. Variations in these indices of foraging efficiency were then compared between three different oceanographic habitats, delineated by the main frontal structures of the Southern Ocean. Results show that changes in body density are related not only to the number of previous prey catch attempts and to the body activity (at a 6 day lag), but also foraging habitat type. For example, despite a lower daily prey catch attempt rate, SESs foraging north of the sub-Antarctic front improve their body density at a higher rate than individuals foraging south of the sub-Antarctic and polar fronts, suggesting that they may forage on easier to catch and/or more energetically rich prey in this area. Our study highlights a need to understand the influence of habitat type on top predator foraging behaviour and efficiency when attempting a better comprehension of marine ecosystems.


Assuntos
Tecido Adiposo/fisiologia , Adiposidade/fisiologia , Composição Corporal/fisiologia , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Focas Verdadeiras/fisiologia , Acelerometria , Animais , Ecossistema , Lipídeos/análise , Locomoção/fisiologia , Comportamento Predatório/fisiologia
9.
PLoS One ; 10(7): e0132681, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26200780

RESUMO

The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.


Assuntos
Análise da Demanda Biológica de Oxigênio/instrumentação , Biologia Marinha/métodos , Focas Verdadeiras/fisiologia , Animais , Análise da Demanda Biológica de Oxigênio/métodos , Feminino , Biologia Marinha/instrumentação , Oceanos e Mares , Projetos Piloto
10.
J Exp Biol ; 217(Pt 14): 2609-19, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24803471

RESUMO

Mature female southern elephant seals (Mirounga leonina) come ashore only in October to breed and in January to moult, spending the rest of the year foraging at sea. Mature females may lose as much as 50% of their body mass, mostly in lipid stores, during the breeding season due to fasting and lactation. When departing to sea, post-breeding females are negatively buoyant, and the relative change in body condition (i.e. density) during the foraging trip has previously been assessed by monitoring the descent rate during drift dives. However, relatively few drift dives are performed, resulting in low resolution of the temporal reconstruction of body condition change. In this study, six post-breeding females were equipped with time-depth recorders and accelerometers to investigate whether changes in active swimming effort and speed could be used as an alternative method of monitoring density variations throughout the foraging trip. In addition, we assessed the consequences of density change on the swimming efforts of individuals while diving and investigated the effects on dive duration. Both descent swimming speed and ascent swimming effort were found to be strongly correlated to descent rate during drift dives, enabling the fine-scale monitoring of seal density change over the whole trip. Negatively buoyant seals minimized swimming effort during descents, gliding down at slower speeds, and reduced their ascent swimming effort to maintain a nearly constant swimming speed as their buoyancy increased. One per cent of seal density variation over time was found to induce a 20% variation in swimming effort during dives with direct consequences on dive duration.


Assuntos
Comportamento Animal/fisiologia , Composição Corporal , Mergulho/fisiologia , Focas Verdadeiras/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Oceanos e Mares , Telemetria
11.
PLoS One ; 7(8): e43565, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952706

RESUMO

How non-echolocating deep diving marine predators locate their prey while foraging remains mostly unknown. Female southern elephant seals (SES) (Mirounga leonina) have vision adapted to low intensity light with a peak sensitivity at 485 nm. This matches the wavelength of bioluminescence produced by a large range of marine organisms including myctophid fish, SES's main prey. In this study, we investigated whether bioluminescence provides an accurate estimate of prey occurrence for SES. To do so, four SES were satellite-tracked during their post-breeding foraging trip and were equipped with Time-Depth-Recorders that also recorded light levels every two seconds. A total of 3386 dives were processed through a light-treatment model that detected light events higher than ambient level, i.e. bioluminescence events. The number of bioluminescence events was related to an index of foraging intensity for SES dives deep enough to avoid the influence of natural ambient light. The occurrence of bioluminescence was found to be negatively related to depth both at night and day. Foraging intensity was also positively related to bioluminescence both during day and night. This result suggests that bioluminescence likely provides SES with valuable indications of prey occurrence and might be a key element in predator-prey interactions in deep-dark marine environments.


Assuntos
Mergulho , Comportamento Predatório , Aceleração , Algoritmos , Animais , Escuridão , Ecologia , Ecossistema , Comportamento Alimentar , Feminino , Peixes , Luz , Luminescência , Movimento , Oceanos e Mares , Focas Verdadeiras , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...